Automatic Recognition of Landforms on Mars Using Terrain Segmentation and Classification
نویسندگان
چکیده
Mars probes send back to Earth enormous amount of data. Automating the analysis of this data and its interpretation represents a challenging test of significant benefit to the domain of planetary science. In this study, we propose combining terrain segmentation and classification to interpret Martian topography data and to identify constituent landforms of the Martian landscape. Our approach uses unsupervised segmentation to divide a landscape into a number of spatially extended but topographically homogeneous objects. Each object is assigned a 12 dimensional feature vector consisting of terrain attributes and neighborhood properties. The objects are classified, based on their feature vectors, into predetermined landform classes. We have applied our technique to the Tisia Valles test site on Mars. Support Vector Machines produced the most accurate results (84.6% mean accuracy) in the classification of topographic objects. An immediate application of our algorithm lies in the automatic detection and characterization of craters on Mars.
منابع مشابه
Landforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملSection: Clustering Cluster Validation Background on Cluster Validation
Spacecrafts orbiting a selected suite of planets and moons of our solar system are continuously sending long sequences of data back to Earth. The availability of such data provides an opportunity to invoke tools from machine learning and pattern recognition to extract patterns that can help to understand geological processes shaping planetary surfaces. Due to the marked interest of the scientif...
متن کاملAn Ontology for Submarine Feature Representation on Charts
A landform is a subjective individuation of a part of a terrain. Landform recognition is a difficult task because its definition usually relies on a qualitative and fuzzy description. Achieving automatic recognition of landforms requires a formal definition of the landforms properties and their modelling. In the maritime domain, the International Hydrographic Organisation published a standard t...
متن کاملMachine Learning Tools for Automatic Mapping of Martian Landforms
Express. These orbiters are surveying the entire Martian surface to understand the planet’s past and the geological, climatic, and other processes responsible for its present state. They gather ever-increasing amounts of spatially extended data. Science data archived from all planetary missions prior to the 2001 Mars Odyssey mission totals approximately 5 terabytes. NASA expects that number to ...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006